direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C22.50C24, C10.1212- (1+4), C4⋊Q8⋊17C10, (Q8×C20)⋊36C2, (C4×Q8)⋊16C10, (D4×C20).28C2, (C4×D4).13C10, C22⋊Q8⋊18C10, C42⋊2C2⋊7C10, C42.50(C2×C10), C4.4D4.8C10, C42⋊C2⋊18C10, C20.347(C4○D4), (C2×C20).965C23, (C2×C10).376C24, (C4×C20).291C22, (D4×C10).325C22, C22.50(C23×C10), C23.21(C22×C10), (Q8×C10).277C22, C2.13(C5×2- (1+4)), (C22×C20).461C22, (C22×C10).104C23, (C5×C4⋊Q8)⋊38C2, C4.39(C5×C4○D4), C4⋊C4.76(C2×C10), C2.29(C10×C4○D4), (C5×C22⋊Q8)⋊45C2, (C2×D4).71(C2×C10), C10.248(C2×C4○D4), C22⋊C4.6(C2×C10), (C2×Q8).65(C2×C10), (C5×C42⋊2C2)⋊18C2, (C5×C42⋊C2)⋊39C2, (C5×C4⋊C4).401C22, (C22×C4).72(C2×C10), (C2×C4).38(C22×C10), (C5×C4.4D4).17C2, (C5×C22⋊C4).90C22, SmallGroup(320,1558)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C10 — C22×C10 — C5×C22⋊C4 — C5×C42⋊2C2 — C5×C22.50C24 |
Subgroups: 282 in 212 conjugacy classes, 150 normal (34 characteristic)
C1, C2 [×3], C2 [×2], C4 [×4], C4 [×11], C22, C22 [×6], C5, C2×C4 [×3], C2×C4 [×10], C2×C4 [×4], D4 [×2], Q8 [×6], C23 [×2], C10 [×3], C10 [×2], C42, C42 [×6], C22⋊C4 [×10], C4⋊C4 [×2], C4⋊C4 [×10], C22×C4 [×2], C2×D4, C2×Q8, C2×Q8 [×2], C20 [×4], C20 [×11], C2×C10, C2×C10 [×6], C42⋊C2 [×2], C4×D4, C4×Q8, C4×Q8 [×2], C22⋊Q8 [×2], C4.4D4 [×2], C42⋊2C2 [×4], C4⋊Q8, C2×C20 [×3], C2×C20 [×10], C2×C20 [×4], C5×D4 [×2], C5×Q8 [×6], C22×C10 [×2], C22.50C24, C4×C20, C4×C20 [×6], C5×C22⋊C4 [×10], C5×C4⋊C4 [×2], C5×C4⋊C4 [×10], C22×C20 [×2], D4×C10, Q8×C10, Q8×C10 [×2], C5×C42⋊C2 [×2], D4×C20, Q8×C20, Q8×C20 [×2], C5×C22⋊Q8 [×2], C5×C4.4D4 [×2], C5×C42⋊2C2 [×4], C5×C4⋊Q8, C5×C22.50C24
Quotients:
C1, C2 [×15], C22 [×35], C5, C23 [×15], C10 [×15], C4○D4 [×4], C24, C2×C10 [×35], C2×C4○D4 [×2], 2- (1+4), C22×C10 [×15], C22.50C24, C5×C4○D4 [×4], C23×C10, C10×C4○D4 [×2], C5×2- (1+4), C5×C22.50C24
Generators and relations
G = < a,b,c,d,e,f,g | a5=b2=c2=d2=1, e2=cb=bc, f2=g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ede-1=bd=db, geg-1=be=eb, bf=fb, bg=gb, fdf-1=cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, fg=gf >
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 35)(2 31)(3 32)(4 33)(5 34)(6 160)(7 156)(8 157)(9 158)(10 159)(11 17)(12 18)(13 19)(14 20)(15 16)(21 27)(22 28)(23 29)(24 30)(25 26)(36 55)(37 51)(38 52)(39 53)(40 54)(41 47)(42 48)(43 49)(44 50)(45 46)(56 75)(57 71)(58 72)(59 73)(60 74)(61 67)(62 68)(63 69)(64 70)(65 66)(76 95)(77 91)(78 92)(79 93)(80 94)(81 87)(82 88)(83 89)(84 90)(85 86)(96 115)(97 111)(98 112)(99 113)(100 114)(101 107)(102 108)(103 109)(104 110)(105 106)(116 135)(117 131)(118 132)(119 133)(120 134)(121 127)(122 128)(123 129)(124 130)(125 126)(136 155)(137 151)(138 152)(139 153)(140 154)(141 147)(142 148)(143 149)(144 150)(145 146)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 20)(7 16)(8 17)(9 18)(10 19)(11 157)(12 158)(13 159)(14 160)(15 156)(26 34)(27 35)(28 31)(29 32)(30 33)(36 41)(37 42)(38 43)(39 44)(40 45)(46 54)(47 55)(48 51)(49 52)(50 53)(56 61)(57 62)(58 63)(59 64)(60 65)(66 74)(67 75)(68 71)(69 72)(70 73)(76 81)(77 82)(78 83)(79 84)(80 85)(86 94)(87 95)(88 91)(89 92)(90 93)(96 101)(97 102)(98 103)(99 104)(100 105)(106 114)(107 115)(108 111)(109 112)(110 113)(116 121)(117 122)(118 123)(119 124)(120 125)(126 134)(127 135)(128 131)(129 132)(130 133)(136 141)(137 142)(138 143)(139 144)(140 145)(146 154)(147 155)(148 151)(149 152)(150 153)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 94)(7 95)(8 91)(9 92)(10 93)(11 82)(12 83)(13 84)(14 85)(15 81)(16 87)(17 88)(18 89)(19 90)(20 86)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)
(1 67 27 56)(2 68 28 57)(3 69 29 58)(4 70 30 59)(5 66 26 60)(6 120 14 126)(7 116 15 127)(8 117 11 128)(9 118 12 129)(10 119 13 130)(16 121 156 135)(17 122 157 131)(18 123 158 132)(19 124 159 133)(20 125 160 134)(21 75 35 61)(22 71 31 62)(23 72 32 63)(24 73 33 64)(25 74 34 65)(36 87 47 76)(37 88 48 77)(38 89 49 78)(39 90 50 79)(40 86 46 80)(41 95 55 81)(42 91 51 82)(43 92 52 83)(44 93 53 84)(45 94 54 85)(96 141 107 155)(97 142 108 151)(98 143 109 152)(99 144 110 153)(100 145 106 154)(101 136 115 147)(102 137 111 148)(103 138 112 149)(104 139 113 150)(105 140 114 146)
(1 36 35 55)(2 37 31 51)(3 38 32 52)(4 39 33 53)(5 40 34 54)(6 145 160 146)(7 141 156 147)(8 142 157 148)(9 143 158 149)(10 144 159 150)(11 151 17 137)(12 152 18 138)(13 153 19 139)(14 154 20 140)(15 155 16 136)(21 41 27 47)(22 42 28 48)(23 43 29 49)(24 44 30 50)(25 45 26 46)(56 76 75 95)(57 77 71 91)(58 78 72 92)(59 79 73 93)(60 80 74 94)(61 81 67 87)(62 82 68 88)(63 83 69 89)(64 84 70 90)(65 85 66 86)(96 121 115 127)(97 122 111 128)(98 123 112 129)(99 124 113 130)(100 125 114 126)(101 116 107 135)(102 117 108 131)(103 118 109 132)(104 119 110 133)(105 120 106 134)
(1 55 35 36)(2 51 31 37)(3 52 32 38)(4 53 33 39)(5 54 34 40)(6 140 160 154)(7 136 156 155)(8 137 157 151)(9 138 158 152)(10 139 159 153)(11 148 17 142)(12 149 18 143)(13 150 19 144)(14 146 20 145)(15 147 16 141)(21 47 27 41)(22 48 28 42)(23 49 29 43)(24 50 30 44)(25 46 26 45)(56 76 75 95)(57 77 71 91)(58 78 72 92)(59 79 73 93)(60 80 74 94)(61 81 67 87)(62 82 68 88)(63 83 69 89)(64 84 70 90)(65 85 66 86)(96 135 115 116)(97 131 111 117)(98 132 112 118)(99 133 113 119)(100 134 114 120)(101 127 107 121)(102 128 108 122)(103 129 109 123)(104 130 110 124)(105 126 106 125)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,35)(2,31)(3,32)(4,33)(5,34)(6,160)(7,156)(8,157)(9,158)(10,159)(11,17)(12,18)(13,19)(14,20)(15,16)(21,27)(22,28)(23,29)(24,30)(25,26)(36,55)(37,51)(38,52)(39,53)(40,54)(41,47)(42,48)(43,49)(44,50)(45,46)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,115)(97,111)(98,112)(99,113)(100,114)(101,107)(102,108)(103,109)(104,110)(105,106)(116,135)(117,131)(118,132)(119,133)(120,134)(121,127)(122,128)(123,129)(124,130)(125,126)(136,155)(137,151)(138,152)(139,153)(140,154)(141,147)(142,148)(143,149)(144,150)(145,146), (1,21)(2,22)(3,23)(4,24)(5,25)(6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(26,34)(27,35)(28,31)(29,32)(30,33)(36,41)(37,42)(38,43)(39,44)(40,45)(46,54)(47,55)(48,51)(49,52)(50,53)(56,61)(57,62)(58,63)(59,64)(60,65)(66,74)(67,75)(68,71)(69,72)(70,73)(76,81)(77,82)(78,83)(79,84)(80,85)(86,94)(87,95)(88,91)(89,92)(90,93)(96,101)(97,102)(98,103)(99,104)(100,105)(106,114)(107,115)(108,111)(109,112)(110,113)(116,121)(117,122)(118,123)(119,124)(120,125)(126,134)(127,135)(128,131)(129,132)(130,133)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153), (1,96)(2,97)(3,98)(4,99)(5,100)(6,94)(7,95)(8,91)(9,92)(10,93)(11,82)(12,83)(13,84)(14,85)(15,81)(16,87)(17,88)(18,89)(19,90)(20,86)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,67,27,56)(2,68,28,57)(3,69,29,58)(4,70,30,59)(5,66,26,60)(6,120,14,126)(7,116,15,127)(8,117,11,128)(9,118,12,129)(10,119,13,130)(16,121,156,135)(17,122,157,131)(18,123,158,132)(19,124,159,133)(20,125,160,134)(21,75,35,61)(22,71,31,62)(23,72,32,63)(24,73,33,64)(25,74,34,65)(36,87,47,76)(37,88,48,77)(38,89,49,78)(39,90,50,79)(40,86,46,80)(41,95,55,81)(42,91,51,82)(43,92,52,83)(44,93,53,84)(45,94,54,85)(96,141,107,155)(97,142,108,151)(98,143,109,152)(99,144,110,153)(100,145,106,154)(101,136,115,147)(102,137,111,148)(103,138,112,149)(104,139,113,150)(105,140,114,146), (1,36,35,55)(2,37,31,51)(3,38,32,52)(4,39,33,53)(5,40,34,54)(6,145,160,146)(7,141,156,147)(8,142,157,148)(9,143,158,149)(10,144,159,150)(11,151,17,137)(12,152,18,138)(13,153,19,139)(14,154,20,140)(15,155,16,136)(21,41,27,47)(22,42,28,48)(23,43,29,49)(24,44,30,50)(25,45,26,46)(56,76,75,95)(57,77,71,91)(58,78,72,92)(59,79,73,93)(60,80,74,94)(61,81,67,87)(62,82,68,88)(63,83,69,89)(64,84,70,90)(65,85,66,86)(96,121,115,127)(97,122,111,128)(98,123,112,129)(99,124,113,130)(100,125,114,126)(101,116,107,135)(102,117,108,131)(103,118,109,132)(104,119,110,133)(105,120,106,134), (1,55,35,36)(2,51,31,37)(3,52,32,38)(4,53,33,39)(5,54,34,40)(6,140,160,154)(7,136,156,155)(8,137,157,151)(9,138,158,152)(10,139,159,153)(11,148,17,142)(12,149,18,143)(13,150,19,144)(14,146,20,145)(15,147,16,141)(21,47,27,41)(22,48,28,42)(23,49,29,43)(24,50,30,44)(25,46,26,45)(56,76,75,95)(57,77,71,91)(58,78,72,92)(59,79,73,93)(60,80,74,94)(61,81,67,87)(62,82,68,88)(63,83,69,89)(64,84,70,90)(65,85,66,86)(96,135,115,116)(97,131,111,117)(98,132,112,118)(99,133,113,119)(100,134,114,120)(101,127,107,121)(102,128,108,122)(103,129,109,123)(104,130,110,124)(105,126,106,125)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,35)(2,31)(3,32)(4,33)(5,34)(6,160)(7,156)(8,157)(9,158)(10,159)(11,17)(12,18)(13,19)(14,20)(15,16)(21,27)(22,28)(23,29)(24,30)(25,26)(36,55)(37,51)(38,52)(39,53)(40,54)(41,47)(42,48)(43,49)(44,50)(45,46)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,115)(97,111)(98,112)(99,113)(100,114)(101,107)(102,108)(103,109)(104,110)(105,106)(116,135)(117,131)(118,132)(119,133)(120,134)(121,127)(122,128)(123,129)(124,130)(125,126)(136,155)(137,151)(138,152)(139,153)(140,154)(141,147)(142,148)(143,149)(144,150)(145,146), (1,21)(2,22)(3,23)(4,24)(5,25)(6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(26,34)(27,35)(28,31)(29,32)(30,33)(36,41)(37,42)(38,43)(39,44)(40,45)(46,54)(47,55)(48,51)(49,52)(50,53)(56,61)(57,62)(58,63)(59,64)(60,65)(66,74)(67,75)(68,71)(69,72)(70,73)(76,81)(77,82)(78,83)(79,84)(80,85)(86,94)(87,95)(88,91)(89,92)(90,93)(96,101)(97,102)(98,103)(99,104)(100,105)(106,114)(107,115)(108,111)(109,112)(110,113)(116,121)(117,122)(118,123)(119,124)(120,125)(126,134)(127,135)(128,131)(129,132)(130,133)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153), (1,96)(2,97)(3,98)(4,99)(5,100)(6,94)(7,95)(8,91)(9,92)(10,93)(11,82)(12,83)(13,84)(14,85)(15,81)(16,87)(17,88)(18,89)(19,90)(20,86)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,67,27,56)(2,68,28,57)(3,69,29,58)(4,70,30,59)(5,66,26,60)(6,120,14,126)(7,116,15,127)(8,117,11,128)(9,118,12,129)(10,119,13,130)(16,121,156,135)(17,122,157,131)(18,123,158,132)(19,124,159,133)(20,125,160,134)(21,75,35,61)(22,71,31,62)(23,72,32,63)(24,73,33,64)(25,74,34,65)(36,87,47,76)(37,88,48,77)(38,89,49,78)(39,90,50,79)(40,86,46,80)(41,95,55,81)(42,91,51,82)(43,92,52,83)(44,93,53,84)(45,94,54,85)(96,141,107,155)(97,142,108,151)(98,143,109,152)(99,144,110,153)(100,145,106,154)(101,136,115,147)(102,137,111,148)(103,138,112,149)(104,139,113,150)(105,140,114,146), (1,36,35,55)(2,37,31,51)(3,38,32,52)(4,39,33,53)(5,40,34,54)(6,145,160,146)(7,141,156,147)(8,142,157,148)(9,143,158,149)(10,144,159,150)(11,151,17,137)(12,152,18,138)(13,153,19,139)(14,154,20,140)(15,155,16,136)(21,41,27,47)(22,42,28,48)(23,43,29,49)(24,44,30,50)(25,45,26,46)(56,76,75,95)(57,77,71,91)(58,78,72,92)(59,79,73,93)(60,80,74,94)(61,81,67,87)(62,82,68,88)(63,83,69,89)(64,84,70,90)(65,85,66,86)(96,121,115,127)(97,122,111,128)(98,123,112,129)(99,124,113,130)(100,125,114,126)(101,116,107,135)(102,117,108,131)(103,118,109,132)(104,119,110,133)(105,120,106,134), (1,55,35,36)(2,51,31,37)(3,52,32,38)(4,53,33,39)(5,54,34,40)(6,140,160,154)(7,136,156,155)(8,137,157,151)(9,138,158,152)(10,139,159,153)(11,148,17,142)(12,149,18,143)(13,150,19,144)(14,146,20,145)(15,147,16,141)(21,47,27,41)(22,48,28,42)(23,49,29,43)(24,50,30,44)(25,46,26,45)(56,76,75,95)(57,77,71,91)(58,78,72,92)(59,79,73,93)(60,80,74,94)(61,81,67,87)(62,82,68,88)(63,83,69,89)(64,84,70,90)(65,85,66,86)(96,135,115,116)(97,131,111,117)(98,132,112,118)(99,133,113,119)(100,134,114,120)(101,127,107,121)(102,128,108,122)(103,129,109,123)(104,130,110,124)(105,126,106,125) );
G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,35),(2,31),(3,32),(4,33),(5,34),(6,160),(7,156),(8,157),(9,158),(10,159),(11,17),(12,18),(13,19),(14,20),(15,16),(21,27),(22,28),(23,29),(24,30),(25,26),(36,55),(37,51),(38,52),(39,53),(40,54),(41,47),(42,48),(43,49),(44,50),(45,46),(56,75),(57,71),(58,72),(59,73),(60,74),(61,67),(62,68),(63,69),(64,70),(65,66),(76,95),(77,91),(78,92),(79,93),(80,94),(81,87),(82,88),(83,89),(84,90),(85,86),(96,115),(97,111),(98,112),(99,113),(100,114),(101,107),(102,108),(103,109),(104,110),(105,106),(116,135),(117,131),(118,132),(119,133),(120,134),(121,127),(122,128),(123,129),(124,130),(125,126),(136,155),(137,151),(138,152),(139,153),(140,154),(141,147),(142,148),(143,149),(144,150),(145,146)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,20),(7,16),(8,17),(9,18),(10,19),(11,157),(12,158),(13,159),(14,160),(15,156),(26,34),(27,35),(28,31),(29,32),(30,33),(36,41),(37,42),(38,43),(39,44),(40,45),(46,54),(47,55),(48,51),(49,52),(50,53),(56,61),(57,62),(58,63),(59,64),(60,65),(66,74),(67,75),(68,71),(69,72),(70,73),(76,81),(77,82),(78,83),(79,84),(80,85),(86,94),(87,95),(88,91),(89,92),(90,93),(96,101),(97,102),(98,103),(99,104),(100,105),(106,114),(107,115),(108,111),(109,112),(110,113),(116,121),(117,122),(118,123),(119,124),(120,125),(126,134),(127,135),(128,131),(129,132),(130,133),(136,141),(137,142),(138,143),(139,144),(140,145),(146,154),(147,155),(148,151),(149,152),(150,153)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,94),(7,95),(8,91),(9,92),(10,93),(11,82),(12,83),(13,84),(14,85),(15,81),(16,87),(17,88),(18,89),(19,90),(20,86),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)], [(1,67,27,56),(2,68,28,57),(3,69,29,58),(4,70,30,59),(5,66,26,60),(6,120,14,126),(7,116,15,127),(8,117,11,128),(9,118,12,129),(10,119,13,130),(16,121,156,135),(17,122,157,131),(18,123,158,132),(19,124,159,133),(20,125,160,134),(21,75,35,61),(22,71,31,62),(23,72,32,63),(24,73,33,64),(25,74,34,65),(36,87,47,76),(37,88,48,77),(38,89,49,78),(39,90,50,79),(40,86,46,80),(41,95,55,81),(42,91,51,82),(43,92,52,83),(44,93,53,84),(45,94,54,85),(96,141,107,155),(97,142,108,151),(98,143,109,152),(99,144,110,153),(100,145,106,154),(101,136,115,147),(102,137,111,148),(103,138,112,149),(104,139,113,150),(105,140,114,146)], [(1,36,35,55),(2,37,31,51),(3,38,32,52),(4,39,33,53),(5,40,34,54),(6,145,160,146),(7,141,156,147),(8,142,157,148),(9,143,158,149),(10,144,159,150),(11,151,17,137),(12,152,18,138),(13,153,19,139),(14,154,20,140),(15,155,16,136),(21,41,27,47),(22,42,28,48),(23,43,29,49),(24,44,30,50),(25,45,26,46),(56,76,75,95),(57,77,71,91),(58,78,72,92),(59,79,73,93),(60,80,74,94),(61,81,67,87),(62,82,68,88),(63,83,69,89),(64,84,70,90),(65,85,66,86),(96,121,115,127),(97,122,111,128),(98,123,112,129),(99,124,113,130),(100,125,114,126),(101,116,107,135),(102,117,108,131),(103,118,109,132),(104,119,110,133),(105,120,106,134)], [(1,55,35,36),(2,51,31,37),(3,52,32,38),(4,53,33,39),(5,54,34,40),(6,140,160,154),(7,136,156,155),(8,137,157,151),(9,138,158,152),(10,139,159,153),(11,148,17,142),(12,149,18,143),(13,150,19,144),(14,146,20,145),(15,147,16,141),(21,47,27,41),(22,48,28,42),(23,49,29,43),(24,50,30,44),(25,46,26,45),(56,76,75,95),(57,77,71,91),(58,78,72,92),(59,79,73,93),(60,80,74,94),(61,81,67,87),(62,82,68,88),(63,83,69,89),(64,84,70,90),(65,85,66,86),(96,135,115,116),(97,131,111,117),(98,132,112,118),(99,133,113,119),(100,134,114,120),(101,127,107,121),(102,128,108,122),(103,129,109,123),(104,130,110,124),(105,126,106,125)])
Matrix representation ►G ⊆ GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 0 | 18 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 32 |
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 40 |
32 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,18,0,0,0,0,18],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[0,40,0,0,1,0,0,0,0,0,32,0,0,0,0,32],[9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,40],[32,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1] >;
125 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4L | 4M | ··· | 4S | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10T | 20A | ··· | 20AV | 20AW | ··· | 20BX |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
125 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | |||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | C10 | C10 | C4○D4 | C5×C4○D4 | 2- (1+4) | C5×2- (1+4) |
kernel | C5×C22.50C24 | C5×C42⋊C2 | D4×C20 | Q8×C20 | C5×C22⋊Q8 | C5×C4.4D4 | C5×C42⋊2C2 | C5×C4⋊Q8 | C22.50C24 | C42⋊C2 | C4×D4 | C4×Q8 | C22⋊Q8 | C4.4D4 | C42⋊2C2 | C4⋊Q8 | C20 | C4 | C10 | C2 |
# reps | 1 | 2 | 1 | 3 | 2 | 2 | 4 | 1 | 4 | 8 | 4 | 12 | 8 | 8 | 16 | 4 | 8 | 32 | 1 | 4 |
In GAP, Magma, Sage, TeX
C_5\times C_2^2._{50}C_2^4
% in TeX
G:=Group("C5xC2^2.50C2^4");
// GroupNames label
G:=SmallGroup(320,1558);
// by ID
G=gap.SmallGroup(320,1558);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,1688,3446,436,1242,304]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=1,e^2=c*b=b*c,f^2=g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*d*e^-1=b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,f*g=g*f>;
// generators/relations